首页> 外文OA文献 >Multiple scales and matched asymptotic expansions for the discrete logistic equation
【2h】

Multiple scales and matched asymptotic expansions for the discrete logistic equation

机译:离散对数方程的多重尺度和匹配的渐近展开

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we combine the method ofmultiple scales and the method of matched asymptoticexpansions to construct uniformly-valid asymptotic solutionsto autonomous and non-autonomous forms ofthe discrete logistic equation in the neighbourhood of aperiod-doubling bifurcation. In each case, we begin byconstructing a multiple scales approximation in whichthe fast time scale is treated as discrete but the slowtime scale is treated as continuous. The resulting multiplescales solutions are initially accurate, but fail tobe asymptotic at late times due to changes in dominantbalance that occur on the slow time scale. We addressthese problems by determining the variable rescalingsassociated with the late-time distinguished limitand applying the method of matched asymptotic expansions.This process leads to novel uniformly-validasymptotic solutions that could not have been obtainedusing the method of multiple scales or the method ofmatched asymptotic expansions alone. While we concentrateon the discrete logistic equation throughout,the methods that we develop lead to general strategiesfor obtaining asymptotic solutions to singularlyperturbeddifference equations, and we discuss clear indicatorsof when multiple scales, matched asymptoticexpansions, or a combined approach might be appropriate
机译:本文采用倍数尺度法和匹配渐近展开法相结合的方法,构造了周期倍增分岔附近离散Logistic方程的自治形式和非自治形式的一致有效渐近解。在每种情况下,我们都从构造一个多尺度近似开始,其中快速时间尺度被视为离散的,而慢时间尺度被视为连续的。所得的多尺度解最初是准确的,但由于在慢时间尺度上发生的显性平衡变化,因此在后期无法渐近。我们通过确定与后期显着极限相关的变量重标度并应用匹配渐近展开法来解决这些问题。此过程导致了新颖的一致有效渐近解,这是无法使用多尺度方法或单独使用匹配渐近展开法获得的。 。在我们始终集中关注离散对数方程时,我们开发的方法导致了获得奇摄动差分方程渐近解的一般策略,并且我们讨论了何时使用多个尺度,匹配渐近展开或组合方法何时合适的明确指标

著录项

  • 作者

    Hall, CL; Lustri, CJ;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号